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1 Abstract

The accuracy is studied of various numeri-
cal flux functions for the inviscid fluxes when

used for Navier-Stokes computations. The

flux functions are benchmarked for solutions

of the viscous, hypersonic flow past a 10 °

cone at zero angle of attack using first-order,

upwind spatial differencing. The Harten-

Lax/Roe flux is found to give a good bound-

ary layer representation, although its robust-

ness is an issue. Some hybrid flux formulas,

where the concepts of flux-vector and flux-

difference splitting are combined, are shown

to give unsatisfactory pressure distributions;

there is still room for improvement. Investi-
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gations of low diffusion, pure flux-vector split-

tings indicate that a pure flux-vector split-

ting can be developed that eliminates spuri-

ous diffusion across the boundary layer. The

resulting first-order scheme is marginally sta-

ble and not monotone.

2 Introduction

This paper addresses the problem of design-

ing accurate numerical flux functions ap-

proximating the inviscid fluxes in the Euler

and Navier-Stokes equations, and may be re-

garded as a sequel to [1]. In the latter paper it

was demonstrated, among other things, that

numerical flux functions that do not recog-

nize contact and shear discontinuities grossly

exaggerate the diffusion of entropy and shear



across the boundary layer in a Navier-Stokes

calculation. Specifically, flux formulas of the

flux-vector splitting (FVS) type, such as Van

Leer's [2], and those based on a tuned scalar

viscosity coefficient, such as Jameson's [3],
were found to be inferior to those based on

flux-difference splitting (FDS), such as Roe's

[4].
Since the appearance of [1], a clear shift in

the use of the various flux formulas has been

observed. FVS is gradually being phased out

as a component of Navier-Stokes codes in fa-

vor of FDS, while the scalar viscosity coef-

ficient in central-difference schemes on occa-

sion, [5], has been replaced by a viscosity ma-

trix, yielding the same low diffusion as FDS.

Another trend, inspired by developments

in hypersonic flight, has been the extension

of known flux formulas for ideal gases to real

and reacting gases. Examples can be found

in [6, 7, 8].

At the same time, a growing effort is being

spent on the development of genuinely multi-

dimensional schemes, in which the influence

of the grid coordinate directions is reduced

as much as possible. This brings along the
formulation of multi-dimensional flux func-

tions, such as the one due to Rumsey et al.

[9, 10], which is based on an approximate Rie-

mann solver including waves traveling in two

orthogonal directions of physical importance.

Another example is the one by Goorjian and

Obayashi [11], based on waves traveling in
and normal to the flow direction.

Independent of the above developments,

several attempts have still been made to sal-

vage the concept of FVS, mainly because of

three reasons:

1. the formulas are relatively simple;

2. the split, fluxes are easy to linearize, for

the benefit of implicit marching schemes.

3. the extension to real gases is relatively

straightforward

Worth mentioning in this field is the work

of Itgnel [12, 13], who has suggested a num-

ber of modifications to Van Leer's [2] FVS,

including a mix with FDS formulas. This

hybrid approach was carried further by Van

Leer [14] and appears to be completed by

Liou and Steffen [15], whose AUSM (Advec-

tire Upwind Splitting Method) flux appears

to rival the accuracy and robustness of Roe's

at significantly reduced computational com-

plexity.

In the present paper we review some of

these new developments in FVS, and subse-

quently pose the following question:

• Is it possible at all to construct a pure

FVS that does not diffuse a grid-aligned

boundary layer, and makes a stable

combination with some form of time-

marching f

The answer turns out to be "yes," but loss

of monotonicity of the numerical solution is

unavoidable.

Thus, improvements to date of the origi-

nal Van Leer FVS can be grouped into two

categories:

• "Hybrid", or mixed FVS/FDS modifica-

tions

• "Pure" FVS modifications

To compare the accuracy of the various

flux functions when used for a viscous com-

putation, the viscous, hypersonic flow over

a cone at zero angle of attack is used to

benchmark the flux formulas. In keeping

with the style of the earlier paper, [1], we

present solutions for the Mach 7.95 viscous

flow over a 10 ° cone at a Reynolds number

of ReL = 0.42 x 106 and freestream total

temperature of To,_ = 775.56K. Adiabatic

wall boundary conditions are applied at the

cone surface, resulting in a wall temperature

of T_, = 11.73T_ and a boundary layer thick-

ness of approximately 0.5 °. In contrast to the



approach in [1], which used a two-dimensional

code for the flux comparisons, we solve the

one-dimensional conical Navier-Stokes equa-

tions. In all of the following computations,

the residual is formed using first-order up-

wind differencing with the various flux func-

tions. Unless otherwise noted, Yoon's [16]

LU-SGS scheme for approximate Newton it-

eration is used to obtain the solutions. All of

the computations reported here were made on

a uniform mesh composed of 50 cells spanning

5 ° from the cone surface. For the benchmark

cases, this results in approximately 8 points

in the boundary layer. The Harten-Lax/Roe

flux that was presented, but not tested, in [1]

is compared to Roe's FDS scheme for the con-
ical flow in Section 3. Section 4 outlines re-

cent hybrid modifications to the original FVS

scheme and compares these to the original
FVS and Roe's FDS scheme for the conical

flowfield. Section 5 addresses the prospect

of pure FVS splitting and shows that, al-

though the adverse dissipative properties of

the original scheme can be negated, the re-

sulting flux formulas are non-monotone. This

non-monotonicity is shown to be unavoidable,

and is evident from an examination of the

eigenvalues of the split flux Jacobians as well

as the eigenvalues of a linearized representa-
tion of the residual.

3 Harten-Lax/Roe Flux

The Harten-Lax/Roe flux ([17] and [18])is an

FDS formula, incorporating a "smart" scalar

dissipation coefficient: the scalar is a square-

amplitude weighted average of the character-

istic speeds. This formula was discussed in

[1], but not tested. The Harten-Lax/Roe flux

does not yield linear stability, as the scalar

dissipation coefficient may be too small for

stabilizing the weaker waves with the larger

characteristic speeds. The instability will

show up first in these waves, increasing their

amplitude, which then feeds back into the dis-

sipation coefficient, increasing its value; thus,

stability is restored.

Numerical solutions for the temperature

and the pressure are shown in Figures 1 and

2; for comparison the results of our bench-

mark flux, i.e. Roe's [4], are also given.

As can be seen from the figures, agreement

with the benchmark results is excellent, al-

though very minor pressure oscillations are

observed in the boundary layer. The pres-

ence of these oscillations might indicate a ten-

dency towards a non-linear instability that

could show up in a more demanding calcula-

tion. Convergence was readily achieved with

the LU-SGS scheme using an infinite Courant

number. Convergence was also achieved us-

ing a single stage explicit (forward Euler)

scheme, but a very small Courant number

was needed. This convergence behavior was

found on a range of 32-bit machines, while

on two 64-bit machines (CRAY Y-MP and

X-MP), this flux combined with either the

LU-SGS or forward Euler scheme yielded only

a three order of magnitude drop in the L2

norm of the residual. The Harten-Lax/Roe

flux nominally uses all of the wave strengths

and speeds evaluated at Roe's averaged state,

but blends these into a single, weighted wave

speed for the construction of the numerical

flux. It is only a small step computing Roe's

flux once the wave strengths and speeds are

found, and one might as well go all the way,

and compute the flux using Roe's formula. As

pointed out in the previous paper [1], though,

the weighted speed can be obtained more sim-

ply as a ratio of scalar products:

AW o AF

v - AW o AU (1)

where U is the vector of conserved state

quantities, F is the flux vector, and W is an

alternative state vector, viz. the gradient of

an entropy function associated with the Euler

equations; for instance W = a___. In spite
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Figure 1: Conical Navier-Stokes solution us-

ing tIarten/Lax/Roe's scheme; temperature

distributions.

of this simplification, this ingenious scheme

might not obtain the notoriety that Roe's

scheme has obtained because of the stability

hazard.

4 Hybrid Modifications

of Van Leer's FVS

We recall the definition of FVS:

F(U) = F+(U) + F-(U); (2)

here U is the vector of conserved state qua.n-

titles, F(U) is the vector of inviscid fluxes

in one coordinate direction, and F+(U) and

F-(U) are called the forward and backward

fluxes, respectively.

Th(_ FVS used most frequently in practice

is Van Leer's [2], owing to the following design
features:

1. The split fluxes are continuously differ-

entiable, which preserves the numerical

accuracy near sonic points, and allows

smooth linearization;

Figure 2: Same solution as in Figure 1; pres-
sure distributions.

2. For subsonic flow, the

Jacobians dF+/dU and dF-/dU have a

zero eigenvalue, which accounts for crisp

numerical profiles of steady shocks.

If the second constraint is relaxed, a one-

parameter family of continuously differen-

tiable split fluxes can be generated [6]; these

are the simplest possible in the sense that

they are at most quartic in the Mach number,

just as the Van Leer fluxes. The differences

among members of this family arise only in

the energy-flux splitting.

Included in this family is the energy-flux

splitting originally proposed by tI/inel [12]:

_ + = F,_ II,F;,_rgy (3)

where H is the specific total enthalpy. Ad-

vantages of this fornmla are:

1. it is as simple as can be;

2. it admits steady Euler solutions with

constant totM enthalpy throughout the

flOW.

H£nel claims that this flux splitting, when

used in Navier-Stokes calculations, gives

more accurate total-enthaipy values in the

4



boundary layer. This may have been ob-

served for the lower flow speeds; in the hy-

personic flow regime the improvement is in-

significant.

The problem of numerical diffusion across

a boundary layer, even when it is aligned

with the grid, can easily be understood by

rewriting the formulas for the flux of a general

scalar function, ¢. For the inviscid fluxes, ¢

would be replaced by u and H for the convec-

tive transverse momentum and energy fluxes,

respectively. Letting B denote the bottom,

and T denote the top cell:

(pv)¢ F+m,B_B -'1- fi_m,T6_T

_ _B "_- C_T

(Fi,+,.+ 2
+ Cr - CB

The first term in these expressions represents

a central-differencing flux; numerical diffu-

sion is introduced by the second term. When

the net mass flux

F,_a= F,+,s + F_,T

vanishes, this is because of a cancellation, not

because F+,B and Fro, T vanish individually.

As a consequence, the diffusive terms do not

vanish with the mass flux.

H/inel [13] has suggested to replace the for-

mula for the transverse-momentum flux by

one borrowed from flux-difference splitting:

(pv)tt = fnet_lupwind ,

with

t/upwind = U B if Fm_t > O,

'Uupwind = 't/T if F_ et < O.

This mixture of flux-vector splitting and flux-

difference splitting prevents the numerical

broadening of the boundary layer, but can

not improve the accuracy of the wall temper-

ature. It further introduces pressure irregu-

larities across the boundary layer.

The similarity of the transverse momen-

tum and energy fluxes, though, suggests that

a further improvement can be obtained by

introducing a similar formula for the energy

flux, i.e.:

with

(pv)H = F:nlet//upMnd, (9)

//upwind = IIB if f net __> 0, (10)

/]upwind = lIT if F_ Ct < 0. (11)

As reported in [14], this removes the error

in tile wall temperature; unfortunately, the

(4) pressure irregularity remains.
The next pair of figures shows the tempera-

ture and pressure distributions obtained with

the three variations of Van Leer's FVS repre-

sented by Equations (3), (6) and (9); for com-

parison, results for the original Van Leer FVS

and for Roe's FDS are included. Use of the

first modification of the energy flux, HS.nel's

(5) energy flux, (equation (3), "Hanel 87" in the
Figure), hardly causes any change with re-

spect to using the Van Leer flux; the second

modification, tI_i.nel's FDS-like transverse-

momentum flux, (equation (6), "Itanel 89" in

the Figure), does achieve the proper shrink-

ing of the boundary layer, which also corrects

the pressure profile (except for a fluctuation

near the wall), but the wall temperature is

still wrong. The third modification, Van Leer

(6) and H£nel's FDS treatment of both the trans-

verse momentum and energy fluxes, (equa-

tions (6) and (9), "VL/tt 90" in the Figure),

finally corrects the wall temperature, but the

(7) pressure fluctuation remains.

(8) The final stage in this sequence of hybrid

flux formulas is the technique named AUSM,

developed by Liou and Steffen [15], where all

advective terms in the fluxes are treated using

the advective Mach number splitting from the

5
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Figure 3: Conical Navier-Stokes solutions us-

ing hybrid modifications to the original Van

Leer FVS; temperature distributions.

original Van Leer mass splitting. The remain-

ing pressure term is split as usual. Prelimi-

nary numerical testing on the cone-flow prob-

lem indicates that the results are comparable

to those of Roe's flux; in particular, they show

a smooth pressure distribution. Some other

results are included in the forum-paper by

Liou and Steffen [19], included in the present

conference proceedings. Since this scheme

was not available in the literature at the time

that this paper was written, it will not be

included in the comparisons made here.

5 Pure FVS Modifica-

tions

Unaffected by the

FVS/FDS formulas,
still remains:

development of hybrid

an intriguing question

Is it possible at all to construct a

pure FVS that does not diffuse a grid-

aligned boundary layer and makes a sta-

ble combination with some form of time-

marching?

5.00

1.67

0.00
0.00

| i . |

1.67 p/pe¢ 3.33
;.00

,___,Orig. FVS This question can be rephrased as:
,___.Itanel 87
.... ,Hand 89

"._ VL/tt 90_..ZRoe FDS • IS it possible to split the Euler fluxes such

that both F,,+ and F,_ vanish with the.[tow

speed, while numerical stability is main-
taincd?

Figure 4: Same solutions as in Figure 3; pres-
sure distributions.

If indeed this were possil)le, the form of the

flux splitting for small v would follow imme-

diately from symmetry considerations:

1
F_ - + O(v2), (12)

2 pv
1

F_oml I = -_p + spar + O(v2), (13)

+ 1
F_mom± = 7puv + O(v2), (14)

+ 1
F;n_rgy - 2PHv + O(v2), (15)



where a is the sound speed and s is a free

parameter representing the derivative of the

split pressures for v = 0. Most noticeable

is that for v = 0 this splitting leads to cen-

tral differencing, which will be unstable if

forward time-differencing is used. If s also

vanishes, central differencing will spread to a

small neighborhood of v = 0. Positive values

of s would seem to introduce some dissipa-

tion, since this will make the split pressures

upwind-biased; this turns out to be not nec-

essarily true. The fluxes (12-15), valid for

v _ 0, must smoothly join the branches for

larger values of Iv[; for the latter we may use
the standard Van Leer fluxes.

Below we shall study a four-parameter fam-

ily of splittings of the one-dimensional Euler

fluxes, hereafter referred to as Low Diffusion

FVS (LDFVS), defined by the formulas, valid

for [M] _< 1

f|

= ipa] (M +1)

-_(M 2- 1) v} (16)

4- F_ v p+Fm_om = + , (17)

p_- _ Pa2{_(M4-1)_(2TM)
7

T4M(M2-1)P}, (18)

= F_mHf;nergy

T pa3M (M - 1) (10)

The three chief parameters are ll, u and w.

If # = u = w = 0, the formulas return the

standard Van Leer fluxes, with H/inel's en-

ergy flux, regardless of the value of P. The

higher the value of the exponent P, the nar-
rower the interval around M = 0 where the

fluxes deviate significantly from the Van Leer-

H/inel fluxes. For conciseness, we will only

show results for P = 2 since the results for

higher P are similar in nature. Note that the

momentum-splitting is conceived as a split-
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Figure 5: Normalized forward mass flux,

F+/(pa), for three values of/t, with P = 2.

ting of the convective flux, plus a pressure

splitting. The extra terms in the energy split-

ting are considered less important than those

in the mass and momentum fluxes, since the

splitting should also be valid for isothermal

flow (3' = 1); in this case the energy equation

would drop out completely. Similarily, inclu-
sion of a transverse-momentum flux is not a

top priority, since the splittings should be sta-

ble in the first place for a one-dimensional

flow.

Figures 5, 6 and 7 show the mass, pres-

sure and energy splittings of this family. In

Figure 5, three values of the mass splitting

parameter,/_, are shown for the forward flux,

where tL = 0 results in the original Van Leer

splitting and I* = 1 causes the split mass flux

to be identically zero at zero Mach number.

Note that for the larger values of # the split

flux becomes negative for a range of negative

Mach numbers, which is somewhat odd for a

"forward" flux, and could be destablizing.

Figure 6 shows the split pressure from the

forward momentum flux. For v = 43. the

slope of p+ vanishes at M = 0, correspond-

ing to s = 0 in Equations (12-15); as men-

tioned above this leads to central pressure-

differencing in the neighborhood of M = 0.



1.00

0.67
p+

-p-

0.33

0.00
- 1.00

/ /
i i

I !

/ /
/ ]

I 11 I

i

/ /

1I II

:1

,j/'
--0.33 0.33 1.00

M

iv=O.O
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Figure 7: Normalized forward energy flux,
+ 3

F;._..,y/(pa ), for three values of w.

This value unexpectedly performed well re-

3 the split pres-garding stability. For u >

sures lose monotonieity, which has little phys-

ical appeal; that this is an improper choice is

also borne by a stability analysis.

Figure 7 shows the resulting energy split-

tings for the case of vanishing split mass

fluxes at M = 0 (i.e. tz = 1), for selected

values of the energy-splitting parameter, co.

Liou and Steffen in [20] have independently

derived a pure FVS formula along tile same

lines as presented above. Their flux has been

coined HOPE (for High-Order Polynomial

Expansion) and includes splittings that are

similar to those presented here. The mass,

pressure and energy splittings of the HOPE

family are

+
Fm_orn

p+ _

+m:(M 2 - 1) 2}
4.

Fray +p+,

7

(20)

(21)

-t-m,_M(M _- 1)2}, (22)

4- 4-
F;..,gy = F2_ssm (23)

where

ml(M) = (M - 1)/(M + 1) (24)

A comparison with Eqs. (16-19) shows that

the tIOPE splitting is very similar to the LD-

FVS splitting with y = 1, u = ._ and co = 0.

The function ml(]ll) is a blending function

that ensures that the split mass flux is zero

at M = 0 and that the split fluxes smoothly

join the unsplit fluxes near IMI = 1. As sug-

gested in [20] the parameter S in (24) is taken

to be S = 4. In [20], various pressure split-

tings were tested, where the one shown here
was found to be the most robust.

Figures 8 and 9 compare mass and pres-

sure splittings of the HOPE and LDFVS fam-

ilies. The effect of the blending function



Figure 8: Normalized forward mass flux for

the ItOPE and LDFVS (t_ = 1) splittings.
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Figure 9: Normalized "forward" pressure flux

for the tIOPE and LDFVS (u = 3 splittings.

in IIOPE is apparent in the Figures. The

pressure splittings are much tile same, with

the tIOPE curve showing a narrower plateau

around M = 0 and closer agreement with the

Van Leer curve near IMI = 1. The tIOPE for-

ward mass flux follows the unsplit flux closely

for M > 0 and oscillates about F + = 0 for

M < 0, while the LDFVS scheme is overall

more smooth. Both pressure and mass split-

tings of the LDFVS family carl be brought

close to those of the IIOPE family (S = 4)

by using a higher exponent P, viz. P = 6.

As will be shown in a following section, the

smoothness (or tack of smoothness) of the

split fluxes has a direct influence upon the

smoothness of the split-flux eigenvalues.

The similarity of the above flux splittings

yields comparable stability bounds and, as

will be shown in the next section, both

fluxes can lead to non-monotone solutions,

even with first-order upwind differencing.

This non-monotonicity is not readily appar-

ent from the conical flow results shown be-

low, owing in part to the geometric and vis-

cous source terms appearing in the equa-

tions, but it, appears to be unavoidable in

multi-dimensional calculations. Regardless of

this unsettling finding, the conical-flow re-

sults show that the excess diffusion is elim-

inated with these flux splittings.

Results obtained with first-order upwind

differencing incorporating the LDFVS fluxes

(16),(17),(18) and (19) are presented in Fig-

ures 10 and 11; results for V'an Leer and

Roe fluxes again are supplied for comparison.

The splitting paranleters used were: # = 1,

u = 3, w = 0 and P = 2. It will be shown

in the following section that this combina-

tion lies outside the stability range predicted

by a stability analysis for inviscid flow. A

converged solution was nevertheless obtained

with the LU-SGS implicit marching scheme,

while convergence could not be achieved with

a single stage (forward Euler) explicit scheme.

In fact, the results are the best obtained so

9
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Figure 10: Conical Navier-Stokes solutions

using the LDFVS formula for # = 1, t, = 34 _

w = 0, and P = 2; temperature distributions.
Figure 12: Error in computed wall tempera-

ture using various levels of p for the conical
Navier-Stokes solution.
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.....,____LDFVS,Roe FDS sure splitting as found from a stability anal-

ysis (Section 6), and ¢v = 0. All of tile

computations were made with the LU-SGS

scheme, and convergence to machine zero was

obtained in 750 or fewer iterations. In Figure

12 the relative error in the wall temperature

is plotted against tt, where the baseline wall

temperature is found fi'om

Figure 11: Same solutions as in Figure 10;

pressure distributions.

far with a first-order scheme. Presumably

this is so because the scheme reverts to cen-

tral differencing wherever v is small, i.e. in

the boundary layer. The wall temperature

is essentially the same as for the Roe flux;

the pressure curve actually is better than for

Roe's flux, as it lacks tile pressure dip appar-

ent in the Roe results just above the bound-

ary layer.

To illustrate the effect of/t upon the dif-

fusive error in the solution, we then ran the

same test problem for 11 values of tt com-

bined with the optimum u-value in the pres-

The effect of the artificial diffusion is clear:

for the uniform grid used, with about 8 cells

in the boundary layer, the diffusion coefficient

must be cut at least by an order of magnitnde,

i.e. 0.9 < p _< 1, in order to admit a wall

temperature of acceptable accuracy.

Results obtained with the ItOPE splitting,

Equations (20), (21), (22) and (23), for the

conical flow are presented and compared to

other results in Figures 13 and 14. Since the

mass, pressure and energy splittings are sim-

ilar to those in the new FVS scheme, it is not

surprising that the computed solutions are

also very similar. Again, the LU-SGS scheme

was used to converge the solution, and con-

vergence to machine zero was obtained in ap-

10
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Figure 13: Conical Navier-Stokes sohltions

using the HOPE and LDFVS splittings: tem-

perature distributions.

proximately 1000 iterations. Here too conver-

gence could not be obtained using an explicit

tilne-inarching scheme. This stability behav-

ior is also indicated by the stability analysis
below.

It would appear from the above results for

the one-dimensional conical flow that the new

flux functions have potential for use in more

realistic, multi-dimensional problems. This,

however, turns out not to be true. To test the

pure FVS schemes for a two-dimensional flow,
the inviseid transonic flow about a NACA

0012 at 1.5 ° angle of attack and free-stream

Mach number of M = 0.85 was computed on

a relatively coarse (64 by 32 cell) grid. It

was impossible to obtain any solution with

either the LDFVS splitting (/_ = l) or the

HOPE splitting, regardless of Courant num-

ber or level of implicit dissipation (controlled

by the splitting parameter in the LU-SGS

scheme). For /_ = 0.9 a converged solution

was obtained, although the resulting fiowfield

was highly non-monotone. To investigate this

further, both fluxes were used to compute the

M = 2 inviscid flow over a 10 ° compression

ramp on a 50 by 50 cell grid. Both computa-

Figure 14: Same solution as Figure 13; Pres-
sure distributions.

tions converged to machine zero, but yielded

highly non-monotone results downstream of

the ramp shock. This finding is discourag-

ing, but not surprising, as the stability and

monotonicity analysis in the following section

will show. Note that this non-monotonicity

occurred with first-order spatial differencing

and can not be cured by the kind of limiters

used in higher order schemes.

6 Stability and Mono-

tonicity Analysis

The usual stability argument regarding FVS

is that B + -= dF+/dU and B- - dF-/dU

must have non-negative and non-positive

eigenvalues, respectively, in keeping with the
notion of forward and backward fluxes. This

would bc a necessary requirement if the two

split-flux Jacobians would commute. It is

hoped that by relaxing this requirement a
stable and monotone FVS scheme could still

be formed. We shall base our stability anal-

ysis on the first-order (cartesian) upwind-

differencing operator

AxRes : -((F+-F+,)

ll



+
with Fourier transform

(26)

AxA(fl, M) = -{B +(1-e -its)

+B- (eit_ - 1)} .

For stability of the differential equation

(27)

dU

d--T = AU (28)

all eigenvalues of A must have a non-positive

real part; this must be enforced for all/3 and
M.

In addition to stability, the split fluxes used

in the discrete residual, (26), must yield

monotone solutions of the state vector, U.

Consider the steady form of (26),

0 = A_F + + A+F- (29)

This equation is then linearized resulting in

0 = B+A_U + B-A+U (30)

or, for non-singular B-

0 = BA_U + A+U, (31)

with

B= "'(B-)-'B+ (32)
For a monotone solution, A+U and A_U

should have the same sign, so that the eigen-

values of B must be all negative. As the

eigenvalues of A and B are difficult to ob-

tain and study analytically, we shall resort
to their numerical evaluation for the sake of

carrying out tile stability and monotonicity

analyses.

First, we look at the stability properties of

the LDFVS flux with a simple energy split-

ting. Figure 15 summarizes the stability

properties of the spatial operator (26) incor-

porating the LDFVS splitting with "7 = 1.4

and w = 0. For 11 values of tt, ranging fi-om

2.00

1.33

0.67

0.00

L; _',%

_,,:_:_¢::_,

¢,:i, va

;,; V

¢,v_ v,,_
_,:_, _¢,,_.

\.:_, v,x

_-__,_ = 0.0=0.1
= 0.2l/.

'7: ;, = 0.3
-.:-t_ = 0.4
__it = 0.5
---It = 0.6
...... # =0.7
.... ,u = 0.8
__#=0.9
__/_ = 1.0

|
-- 1.00 - 0.33 0.33 1.00

v

Figure 15: Maximum real part encountered

in any of the eigenvalues of A(/3, M), versus

u, for a range of values of p, using P = 2.

The maximum is taken over all/3 and M.

0 to 1, the largest positive real part encoun-

tered among the three eigenva/ues of A(fl, M)

is plotted against v. The eigenvalues of the

matrix A were found numerically given the

Mach and wave numbers using a packaged

root solver.

For small values of tt there appears to be an

appreciable range of u-values for which no un-

stable eigenvalues occur. The stable range of

u narrows down considerably as it increases,

until only a single stable value of u remains,

i.e. u = 0.52 for p = 0.96. This shows that

the diffusive fluxes at M = 0 can be reduced

by a factor 25 without losing the possibility of

being implemented in a stable time-marching

scheme. Similar results, but slightly more re-

strictive, were obtained for P = 6, so this

avenue was not explored further. We also

checked stability for 7 = l, and found no

qualitative difference.

Although this result is encouraging, it is

desirable to make the scheme strictly stable

for standard explicit procedures. For this we

turn to the energy splitting and perform the

stability analysis now for tt = 1. Figure 16

shows the maximum of all eigenvalues (over

12
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Figure 16: Contours of maximum real part

of all eigenvalues for # = 1. The maximum

is taken over all/3 and M. The lowest level

displayed is 0.002.
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Figure 17: Conical Navier-Stokes solution us-

ing the stable splitting parameters: # = 1.0,

u = 3/4 and w = 3/2.

all Mach and wave numbers) for selected val-
ues of both u and w. One can see that the

scheme approaches stability in a very nar-

row trough with a minimum at u = 3/4 and

_., = 3/2, although even there the maximum

eigenvalue is still slightly positive. This split-

ting is found to be stable in practice for the

conical flow problem: for /_ = 1, u = 3/4

and aJ = 3/2 a converged solution can be

obtained using a single-stage explicit (for-

ward Euler) scheme with a Courant number

of CFL = 0.1 after a large number (10,000)

of iterations. Unfortunately, the stable LD-

FVS scheme yields the worst non-monotone

solution for the conical flow, as is shown in

Figure 17.

A detailed look at the eigenvalues is nec-

essary to see if there is any hope at all of

finding a scheme that will be both stable and

monotone. Figure 18 shows the eigenvalues

of B + for the original FVS with H_.nel's en-

ergy splitting and the LDFVS for p = 1 and

u = w = 0. This choice of parameters shows

the effect of the low diffusion mass splitting

upon the split flux eigenvalues. This Figure

1"00 / / ,

0.331 Z////

0 33 t - _i_'_'_'_12" -

--1.00
- 1.00 --0.33

Mach

//

s"

//

.s._"

i J

I I

0.33 1.00

__ Orig FVS
___ LDFVS
__ Orig FVS
___ LDFVS
__ Orig FVS
___ LDFVS

Figure 18: Eigenvalues of the forward-flux Ja-

cobian, B +, for the original FVS with tI_ners

energy flux, and the LDFVS with ]l = 1,

/] ---- 0./ ---- 0.

13



loo / A

'33" f ......

--0.33- -_

-I.00 _ _ _
--I.00 -0.33 0.33
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1.00
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___HOPE
__ LDFVS
___HOPE
__ LDFVS
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Figure 19: Eigenvalues of the forward-flux

Jacobian, B +, for the LDFVS with /_ = 1,

u = 3/4,w = 3/2 and the HOPE FVS.

shows that the eigenvalue corresponding to

the characteristic speed u has the incorrect

sign for M < 0, while the eigenvalue corre-

sponding to u - a, which for M < 1 should

be zero or slightly positive, (in the context of

a forward flux) has the wrong sign over the

whole Mach number range. The stable split-

ting (# = 1,v = 3/4 and w = 3/2) and the

HOPE splitting are compared in the next Fig-

ure. It is seen from this Figure that the eigen-

value corresponding to u - a still has the in-

correct sign over a large Mach number range

for both splittings. With this type of behav-

ior, it is highly unlikely that a monotone solu-

tion could generally be achieved with either

of the non-diffusive fluxes, regardless of the

pressure or energy splittings. This is also sup-

ported by the results of the full monotonicity

analysis.

Figures 20, 21, 22, and 23 show the eigen-

values of B over the range of Mach numbers

]M[ < 1. (These were computed by numeri-

cally finding the inverse of B- for M < 0, or

B + for M > 0, multiplying the inverse with

the remaining Jacobian and finding the eigen-

values using a root solver.) The first figure

-16.0

-33.0

-5°-°1!0o'-o'.33 0.53' ,.Ioo
Math

Figure 20: Eigenvalues of the B matrix for

the original FVS scheme using H/inel's energy
flUX.

1.00

-0.33

Y
I I I

-0.33 0.33
Mach

-1.00 I
-1.00 1.00

Figure 21: Eigenvalues of the B matrix for

the LDFVS splitting using/l = 1, u = w = 0.

The curves for all three eigenvalues fall nearly

on top of each other.
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Figure 22: Eigenvalues of the B matrix for

the stable LDFVS splitting (/l = 1, u = 3/4

and _ = 3/2).
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Figure 23: Eigenvalues of the B matrix for

the ttOPE splitting.

shows the eigenvalues for the original FVS

scheme. As can be seen here, all of the B

eigenvalues have the proper negative sign, as

they should, which provides some level of con-

fidence in the monotoMcity argument. Figure

21 shows the eigenvalues of B for the LDFVS

with t.L = 1 and u = _0 = 0, while Figure 22

shows the eigenvahles for the stable LDFVS.

Both of these schemes have all eigenvalues of

B of the wrong sign, which indicates that a

monotone sohltion, whether stable or not, is

generally impossible and a lucky coincidence

a.t best.. Figure 23 shows the eigenvalues for

tIOPE. Although il, does have eigenvalues of

the wrong sign over a wide range of blach

numbers, there is a region near ]M] = 1

where the correct signs are observed. This

behawior can be traced back to Figure 19,

which shows the split flux eigenvalues. For a

small region near IMI = 1 the HOPE scheme

has the proper sign for all of the split-flux

eigenvalues. But, as in the LDFVS schemes,

the ItOPE scheme has one eigenvalue that is

hopelessly of the wrong sign near M = 0.

This type of behavior cannot be avoided,

no matter what va.lues are used for the pa-

rameters in LDFVS or ItOPE, including the

exponents P and S'. The bottom line is that

splittings that are non-diffusive for M = 0,

by necessity must connect Van Leer's split

fluxes for ]M] --+ 1 to central difference fluxes

for IMI-, o (seeEquations (12-1,5)), and the

latter are known to yield oscillatory solutions.

7 Conclusions

In this paper we have compared various low-

diffusion flux formulas for use in Navier-

Stokes computations. To compare these var-

ious formulas, the viscous, hypersonic flow

over a 10 ° cone at _I = 7.95 was computed

by solving the conical Navier-Stokes equa-

tions in one dimension. The tlarten-Lax/I/oe

scheme, incorporating a "smart" scalar diffu-
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sion coefficient, presentedbut not tested in [4]
[1], was tested here and shownto give good
results, although there is somequestion as
to its robustness.Next, recentdevelopments
in flux-vector and hybrid flux-vector/flux- [5]
differencesplitting (FVS/FDS) were exam-
ined. These fluxes were shown to yield a
correct temperature profile in the boundary

layer, accompanied by a pressure irregular- [6]

ity near the boundary layer edge. In an at-

tempt to overcome this deficiency, it was in-

vestigated whether a pure FVS could be con-

structed that would cause minimal dissipa-

tion across a contact discontinuity, yet still [7]

be stable and monotone. We have shown

that it is indeed possible to construct a pure

FVS scheme with minimal mass diffusion, al-

though this is achieved at marginal stability
and a loss of monotonicity, even for first-order [8]

spatial differencing. This makes pure FVS a

dead-end street; the latest developments in

hybrid FVS/FDS formulas, though, indicate

that some elements of FVS may survive and

be used advantageously in flux functions for [9]

the Navier-Stokes equations.
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